Analysis of Applied Maths Leaving Cert Questions 1983-2015

The following analysis is based on the modified papers with mistakes removed. You can buy a booklet of papers, with answers at the back, 1990-2015 for €10 (which all goes to support schools in Ethiopia and the needy in Ireland).

Contact Oliver Murphy, Castleknock College, Castleknock, Dublin 15 or by email: olivermurphy@mathsandappliedmaths.ie

It is recommended that students try to solve questions on their own and then, if they get stuck, to look below for guidelines.

Ratings

1 = Easy
2 = Reasonably easy
3 = Regular
4 = Tricky
5 = Very difficult

Q1: Uniform Acceleration

2015	(a) Nice and straightforward: $s(7) - s(6) = 39$	
	(b) Not too difficult for a part (b)	Rating: 3
2014	(a) Requires a bit of work but OK	8
	(b) The key equation is: Power = Tv	Rating: 3
2013	(a) $s = 39.2$ leads to a quadratic with 2 solutions	8
	(b) Letters instead of numbers shouldn't mean it's too hard	Rating: 3
2012	(a) Not too hard. (b) You end up with a quadratic: use	0
	hard to factorise.	Rating: 3
2011	(a) Investigate AB then AC	
-011	(b) Average speed = total distance / total time	Rating: 3
2010	(a) Both parts are very manageable	itting, c
_010	(b) This can be solved by equations or graphs.	Rating: 3
2009	(a) 'Let fall' means $u = 0$.	itting, c
	(b) Tricky enough with lots of letters	Rating: 4
2008	(a) (i) Easy (ii) Note that the distance travelled and the dist	0
2000	ground are two different things.	
	(b) Not too difficult for a part (b)	Rating: 3
2007	(a) It is travelling at 29.9 m/s at time $t = 2.5$.	
	(b) Average speed = total distance / total time: Form an equ	uation!
		Rating: 4
2006	(a) Remember you must give a reason why $t_1 : t_2 = 3 : 1$.	
	(b) They will pass when $S_1 + S_2 = 2(79.5)$	Rating: 3
2005	(a) Tricky for a part (a): Can be solved 'relatively'.	8
	(b) When in the sand, gravity pulls it down, the resistance is	s up. Use $F = ma$.
		Rating: 4
2004	(a) Remember the times are t and $t - 1$.	8
	(b) Use $F = ma$ both times. In (ii) $a = 0$, as the car is not ac	celerating.
		Rating: 2
2003	(a) Remember you must make equations for p to q and p to	r.
	(b) Tricky! Since the man just catches the bus, we can con-	clude that he and
	the bus are going at the same speed when he catches it.	Rating: 4
2002	(a) If the starting point is the origin, then it hits the ground w	when $s = -30$.
	(b) Can be done with equations or with areas in a time-velo	city graph.
		Rating: 2
2001	(a) Draw time-velocity graphs.	
	(b) The times are t and $t - T$.	Rating: 3
2000	(a) Two equations: One for <i>t</i> seconds the other for the first 2	
	(b) Try to synchronise the watches by finding their position	
	acceleration is over. Then proceed.	Rating: 4
1999	(a) Ugh! Power = Tv where T = tractive effort, v = velocity	
	(b) Very difficult to solve!	Rating: 5
1998	(a) Very tricky for a part (a). Average speed = Total distance	ce/Total time.
	Draw a time-velocity graph with times x , y , z for each part.	
	(b) Use $v^2 = u^2 + 2as$ twice! And then use $v = u + at$ twice	e! YUK!!
	The numbers here are ugly. Shoot the exam-setter.	Rating: 5
1997	(a) Time-velocity graph.	

	(b) (i) They collide when $S_1 + S_2 = d$. (ii) "Before" means	one time is less
	than the other. (iii) It returns to q when $s = 0$.	Rating: 4
1996	(a) Do equations for [ab] and [ac]. Solve!	0
	(b) Tricky but do-able.	Rating: 3
1995	(a) Let $x = pq = qr $ etc. Tricky!	
	(b) Follow one flight (which travels 3 m up and down).	Rating: 4
1994	(a) Easy. You must give a reason why $t_1 : t_2 = 0.8 : 0.6$	
	(b) A spring balance measures the REACTION between the	
1003	floor.	Rating: 3
1993	(a) You have to show that the three equations are compatib show this works in the third. Actually there is a flaw in this	
	you see it?	s question – can
	(b) (i) It is best to let $t =$ the time that Q spends in the air at	nd therefore $t + 2 =$
	the time that P spent in the air (since it took off first)	
	(ii) Can be answered mathematically or logically; just be cl	ear! Rating: 3
1992	(a) Very tricky!! The particle is ascending with the balloor	when it is let go –
	it will go up a bit before it starts to fall!	· 1
	(b) (i) Show that $S_1 = S_2$ has two real solutions (ii) Greates	
1001	their velocities are equal. (a) (ii) Moons to see (but decay't!) that $u = 2t + 50$ at even ti	Rating: 5
1991	(a) (ii) Means to say (but doesn't!) that $v = 2t + 50$ at any tiparticle is accelerating: can you find the acceleration?	me <i>l</i> . So the
	(b) Solve $S_1 = S_2$	Rating: 3
1990	(a) Very tricky for a part (a). You want to find the two solutions $f(x) = \frac{1}{2} \int \frac{1}{2} $	0
	Their product can be found using Quadratic theory $\alpha\beta = \frac{c}{a}$	•
	(b) Average speed = Total distance/Total time	Rating: 5
1989	Be careful! The cars do not decelerate at the same time! T	•
	when the gap between the fronts of the cars is 5 metres: S_E	
1988	(a) The speed of the particle at time $t = 4.5$ is $v = 23$	Rating: 4
1700	(b) Write equations for [<i>ab</i>] and [<i>ac</i>]	Rating: 3
1987	(a) You have to show why $t_1 : t_2 = 4 : 8 = 1 : 2$.	8
	(b) Greatest gap occurs when their velocities are equal.	Rating: 3
1986	(a) Tricky part (a)!	10.
	(b) When you find $a = 10$ you know that at time <i>t</i> the veloc	•
1985	(i) OK (ii) The starting speed is u but the finishing speed is	Rating: 4
1700	<i>u</i> and <i>v</i> : that is $\frac{1}{2}(u+v)$	Rating: 4
1984	(a) You can solve this 'relatively' by looking at the relative	8
1704	speed and 120 m to be covered	miniar speed, mar
	(b) Can be done relatively also.	Rating: 4
1983	They will pass when $S_1 + S_2 = 120 + 80$. You can choose	whichever train
	you want to put its foot on the brakes – the answer will be t	
	question asks for the decrease in the acceleration.	Rating: 4

Q2: Relative Velocity

2015	(a) (i) Regular. (ii) Start when B reaches the junction. Whe You have to go back in time to find the closest distance.	ere is A then?
	(b) Let $v_r = x\vec{i} + y\vec{j}$ and form two equations	Rating: 3
2014	(a) They will collide if $v_{XZ} = -kr_{XZ}$, for positive k. But you	e
2011		
	'synchronise the watches' first: tricky!	Dating 1
2012	(b) (i) OK (ii) requires clever use of chord-length	Rating: 4
2013	(a) Very tricky for (a): Find shortest distance in terms of θ	
	(b) The best way is to use the <i>t</i> -method in Fundamental App	
2012		Rating: 4
2012	(a) Tricky enough to work out the angles	D - 4
3011	(b) Regular nearest distance and 'within range' question	Rating: 3
2011	(a) Start when B reaches the junction; where is A?	
2010	(b) Examine the cases where she lands at B and at C.	Rating: 3
2010	(a) They will collide if $v_{BA} = -kr_{BA}$, for positive k.	
	(b) The apparent velocity of the wind means v_{WM}	Rating: 3
2009	(a) Long! When B reaches the junction, where is A?	
	(b) Careful, now! Only 20 marks for this part.	Rating: 4
2008	(a) Regular question.	
	(b) Let the velocity of the wind $= x\vec{i} - 3\vec{j}$ both cases. And \vec{j}	let $v =$ the speed of
	the man.	Rating: 3
2007	(a) Find the shortest distance between them first.	8
	(b) Let $t =$ the time. Good diagram needed.	Rating: 3
2006	(a) The fact that they are flying horizontally should never h	ave been
	mentioned - this means that the aeroplanes are not taking o	ff or landing.
	Draw a clear diagram to show where A heads, where the wi	nd brings it, so that
	the resultant is 200 km/h NW.	
	(b) Tricky: Draw a very clear diagram on graph paper.	Rating: 5
2005	(a) Shortest time means she heads straight across.	
	(b) In vector equations, $i = i$ and $j = j$.	Rating: 4
2004	(a) Draw a clear diagram. (b) Use the formula for distance	
	line.	Rating: 3
2003	(a) Let the velocity of the wind $= x\vec{i} + y\vec{j}$ both cases.	
	(b) OK. Be careful to answer precisely what you were asked	ed. Rating: 3
2002	(a) Draw a clear diagram of the "relative path".	
	(b) Do some general algebra first!	Rating: 3
2001	(a) Be very careful with directions and signs.	
	(b) Very tricky! Draw good diagrams.	Rating: 5
2000	They will intercept if P moves up u all the time, to stay leve	
	See where they are at half-time first!	Rating: 4
1999	(a) Good diagram needed. Use sine rule.	.1 1 .
	(b) You will need differentiation to find the angle which le	
1000	path's angle" as small as possible. Ugh!!	Rating: 5
1998	(a) Horrible part (a)! Let $t =$ the time and examine the direct	
	(the yacht travelling $5t$ and the speedboat $20t$). Use the sine	
	(b) Ugh ² !! Use the same method as in part (a) but when yo	
	rule, you must use both solutions (one in each of the first 2	quadrants) and

1997	proceed to solve both! Whoever set this question should hat Daniel O'Donnell records non-stop for a week. Let the velocity of the wind $= x\vec{i} + y\vec{j}$. You will end up with	Rating: 5 ⁺
1777	degree equations. Subtract them. Then get x in terms of y a 'substitution'. It is interesting to note that solving two second equations is not on the Maths course.	and solve by
1996	Let the velocity of the ship $C = x\vec{i} + y\vec{j}$. Its magnitude is 3	
1770	equation, then another, and solve! Also a good diagram is ϕ	
	equation, then another, and solve. This a good diagram is	Rating: 4
1995	(a) Pythagoras comes into play here.	B
	(b) (i) is easy (ii) needs the <i>t</i> -method, as in 1998's question.	. Rating: 4
1994	(a) Easy - if you study the situation when B reaches the inte	
	(b) Use formulae from Uniform Acceleration.	Rating: 3
1993	(a) Let the velocity of the wind $= x\vec{i} + y\vec{j}$.	
	(b) So nice!	Rating: 1
1992	(i) should read "the directions in which the aeroplane must	head"
	(ii) Two good big diagrams are needed	
	(iii) A joke!	Rating: 3
1991	Tricky! If the wind appears to come from the direction $2\vec{i}$	
1000	the i-component to the j-component is 2 : 3.	Rating: 4
1990	(a) Fine. (b) The best thing is to wait until A gets to the jur	
1000	proceed.	Rating: 3
1989	Let the velocity of the wind $= x\vec{i} + y\vec{j}$. (i) Solve simultane	
1000	(ii) Reasonably easy.	Rating: 2
1988	(a) Two clear diagrams needed.	Dating 1
1987	(b) Not too challenging(i) Straightforward (ii) If you find the shortest distance bet	Rating: 2
1907	use Pythagoras' Theorem; if not use the Cosine Rule or Sin	•
	use i yuugotus Theorem, it not use the Cosme Rule of Sh	Rating: 3
1986	Reject the solution $v = 0$.	B
	(i) Wait until A gets to the junction. (ii) Pythagoras.	Rating: 4
1985	Q 5 (a) Good diagram of the "relative path" is needed.	
	(b) is about Power, not relative velocity	Rating: 4
1984	A good clear diagram of the relative path will see this through	6
4000		Rating: 3
1983	Let the velocity of the wind $= x\vec{i} + y\vec{j}$. Extremely tricky: a	-
	numbers.	Rating: 5

Q3: Projectiles

2015	(a) Very long with horrible numbers for a part (a)(b) Not too difficult for a part (b)	Rating: 4
2014	(a) Very nasty! Ugly numbers, too. The difference between	$-b+\sqrt{b^2-4ac}$
	and $\frac{-b - \sqrt{b^2 - 4ac}}{2a}$ is $\frac{2\sqrt{b^2 - 4ac}}{2a} = \frac{\sqrt{b^2 - 4ac}}{a}$ ugh!!	2 <i>a</i>
2013	(b) Use landing angle equal to β (a) Nice projectile on a horizontal plane	Rating: 5
	(b) Can be done with calculus or as in textbook	Rating: 3
2012	(a) OK question about range on the horizontal plane(b) Here the trigonometry might be tricky – but solvable.	Rating: 3
2011	(a) Regular target practice question.(b) i-speed stays the same, j-speed will be multiplied by <i>e</i>.	Rating: 3
2010	(a) Find time first. $-v = 2$	
	(b) Landing angle <i>l</i> is given by $\tan l = \frac{-v_y}{v_x} = \frac{2}{\sqrt{3}}$	Rating: 3
2009	(a) What a nasty part (a)!(b) Not so bad, to compensate.	Rating: 4
2008	(a) Be clear what you are given and what you want to find.	C
	(b) The <i>x</i> -acceleration is positive; The <i>y</i> -acceleration is neg	ative Rating: 4
2007	(a) Straightforward.(b) The landing angle is 45 degrees.	Rating: 3
2006	(a) (i) OK (ii) The direction of the vector $x\vec{i} + y\vec{j}$ is $\tan^{-1}\frac{y}{x}$	U
	(iii) Use $m_1.m_2 = -1$ or 'dot product'. (b) Straightforward: find S_x when $S_y = 0$.	Rating: 3
2005	(a) Tricky for a part (a). When a ball bounces, the i-velocit	U
	 same, but the j-velocity is multiplied by -e. (b) You need to open Page 9 of the Mathematical Tables, and 	nd use product-to-
2004	sum formulae, amongst others. (a) Assume the particle just scrapes the ceiling.	Rating: 5
	(b) You'll need to use a formula for $tan(\theta - \alpha)$ eventually.	
2003	(a) You must derive formulae for the range and the maximu ready-made formulae allowed! (b) OK.	um height – no Rating: 3
2002	 (a) Solve S_y = 14.7 (using the quadratic formula). (b) Fine question. 	Rating: 3
2001	(a) Let the point of projection be the origin. The target is (2	21, 1).
	(b) Yuk! Find speed and velocity vector of particle as it hit first time. Then see 2005 above.	s the plane for the Rating: 5
2000	(a) Classic question if you know your basics.(b) Again, know your theory!	Rating: 3
1999	(a) This is about landing angle. In this case, the landing ang	U

	(b) Very difficult and long! Potential energy and kinetic ener have to be calculated. It takes ages.	rgy (at landing) Rating: 5
1998	(a) Target : use $\frac{\sin A}{\cos A} = \tan A$ and $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a qu	adratic in tan A.
1997	(b) (i) OK (ii) Tricky but do-able! R (a) Not bad!	lating: 4
1996	(a) The numbers in the quadratics are nice (if you divide by 4	
1995	(b) Tricky but do-able. (a) (i) Let $\vec{u} = x\vec{i} + y\vec{j}$ etc. (ii) OK (iii) Speed = $\sqrt{v_x^2 + v_y^2}$	Lating: 3
		ngle). Rating: 4
1994		
	(b) (i) Let the origin be the point of projection (ii) Speed = $\sqrt{2}$	
		Rating: 3
1993	(a) Regular.(b) (i) No problem (ii) $\tan l = -\frac{v_y}{v_x}$ when $S_y = 0$	
1992	(i) Target : use $\frac{\sin A}{\cos A} = \tan A$ and $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of $\frac{1}{\cos^2 A} = 1 + \tan^2 A$ to get a quantum variable of \frac{1}{\cos^2 A} = 1 + \tan^2 A to get a quantum variable of \frac{1}{\cos^2 A} = 1 + \tan^2 A to get a quantum variable of \frac{1}{\cos^2 A} = 1 + \tan^2 A to get a quantum variable of \frac{1}{\cos^2 A} = 1 + \tan^2 A to get a quantum variable of \frac{1}{\cos^2 A} = 1 + \tan^2 A to get a quantum variable of \frac{1}{\cos^2 A} = 1 + \tan^2 A to get a quantum variable of \frac{1}{\cos^2 A} = 1 + \tan^2 A to get a quantum variable of \frac{1}{\cos^2 A} = 1 + \tan^2 A to get a quantum variable of \frac{1}{\cos^2 A} = 1 + \tan^2 A to get a quantum variable of \frac{1}{\cos^2 A} = 1 + \tan^2 A to get a quantum variable of \frac{1}{\cos^2 A} = 1 + \tan^2 A to get a quantum variable of \frac{1}{\cos^2 A} = 1 + \tan^2 A to get a q	adratic in tan A.
	(ii) To get maximum clearance, we want the maximum height	
1991	Differentiate s_y with respect to α . R (i) Regular.	Rating: 4
1771	(ii) Tricky. When a ball bounces, the i-velocity remains the s	ame, but the j-
1000		Rating: 4
1990	(i) Landing angle.(ii) Lands perpendicularly.R	Rating: 4
1989		0
1000		Rating: 2
1988	 (a) Not difficult. Use g = 9.8. (b) See 1991 (above) for 'bouncing theory'. It will take off at 	t an angle of
	45° to the hill, and hence at 90° to the horizontal. Surely, if it	-
1007	1 0	lating: 4
1987	(a) Lands perpendicularly. (b) Examine the second half of the the highest point to q .	ating: 4
1986	Remember that if you can find that $\tan \alpha = 4$ then you can we	ork out the sine
	and cosine easily. At t_1 the flight is perpendicular to the origin	_
1985	Use $m_{1\bullet}m_2 = -1$ Q2: (i) OK (ii) Regular (iii) Use the quadratic formula and s	Sating: 4
1705		Sating: 3
1984	Since the particle strikes the plane while moving horizontally	-
1983	angle is the angle of the inclined plane. R Q4: It is not clear, but you may assume that the target is not r	Rating: 4
1200	gravity. It is travelling at a constant speed at a 45° angle. Ta	-
	in flight – not a projectile. R	lating: 3

Q4: Pulleys & Wedges

2015	(a) Not bad. In (iii) you use conservation of momentum of	the whole system,
	treating the three connected particles as a 'train' (b) Difficult wedge question, made easier by the fact that the	ne wedge is at rest.
		Rating: 4
2014	(a) Unusual apparatus, but when you think about it, it's OK	
	metre, B will move 2 m. Hence their accelerations are a ar (b) Regular wedge question.	Rating: 4
2013	(a) In (ii) 6kg has acceleration $f+g/8$ and 7kg has $a = f-g/8$	Nating. 7
2010	(b) Accelerations are a, b and $(a + b)/2$	Rating: 2
2012	(a) After B hits the ground, $T = 0$	8
	(b) Accelerations are a, b and $(a + b)/2$	Rating: 3
2011	(a) It's an inclined plane – not a wedge.	
	(b) 4 equations with four unknowns.	Rating: 3
2010	(a) Nice and easy.	
2000	(b) Two particles on a wedge. Not bad, though.	Rating: 3
2009	(a) Nice regular pulley for starters.	
••••	(b) The accelerations are: $m_1: a$, 1 kg: b and C: $\frac{1}{2}(a+b)$.	Rating: 4
2008	(a) The accelerations are <i>a</i> and 2 <i>a</i> . This got 30 marks.	a analysis to a set lealf
	(b) Yuk! But don't be put off. You only needed a force di the marks. The tensions in the string act on the wedge also	6 6
2007	(a) Not bad: draw a clear force-diagram. (b) The acceleration	0
2007	6 kg: b and B: $\frac{1}{2}(a+b)$.	Rating: 3
2006	(a) Regular pulley question.	8
	(b) Regular wedge question.	Rating: 3
2005	(a) OK	
	(b) The 3 kg falls, then suddenly the 5 kg is picked up $-$ yo	
	conservation of momentum to find the new speed of the pa	
2004	(a) Regular pulley question.	Rating: 4
2004	(b) Regular wedge question.	Rating: 3
2003	(a) Regular pulley question.	Rating. 0
	(b) Inclined plane (not a wedge).	Rating: 2
2002	(a) SHM!! Doesn't belong here.	
	(b) Relative accelerations: be careful.	Rating: 3
2001	Regular pulley question.	Rating: 2
2000	(a) Regular pulley question.	Dating 2
1999	(b) Regular wedge question.(a) (i) Easy (ii) Each particle is propelled up by a Reaction	Rating: 3
1999	weight. Use $F = ma$ for each particle.	and down by a
	(b) Regular wedge question.	Rating: 3
1998	(a) OK (b) Ugh! Very tricky question because the friction	8
	has an equal but opposite anti-friction which propels A for	
	have been asked. It's a university question.	Rating: 5
1997	(a) OK (b) Easy enough; the accelerations of C and E are a	
1007	(i) Fine (ii) Answer 4 1 - 1 - (ii) T -	Rating: 2
1996	(i) Fine (ii) Answer the question you were asked! (iii) Tric	$\begin{array}{l} \text{Ky: } a = b. \\ \textbf{Rating: 3} \end{array}$
		Ixatilig. J

1995 1994 1993 1992	(i) OK (ii) Easy (iii) You must regard the whole apparatus a 0.9 kg which then becomes a heavier "train" of mass 1.1 kg picked up. Use conservation of momentum. (iv) OK. (i) Easy (ii) OK (iii) Tricky but do-able. Very hard wedge question. Five equations (2 for each partiwedge). The strings at the top of the wedge pull on the weather out! Assume that the accelerations are: m : upwards a ; $3m$: upwards a	g when the 0.2 kg is Rating: 4 Rating: 3 icle and one for the dge – don't leave Rating: 5
	M : downwards $\frac{1}{2}(a+b)$.	Rating: 3
1991	This question was a bit unclear. The block is a bus which is an acceleration $\frac{g}{3}$ to the right.	is being driven with Rating: 4
1990	(i) The accelerations are: $A : a ; B : b ; 2m : \frac{1}{2}(a+b)$. (ii) Ignore the statement "If $\mu \prec \frac{3}{4}$ " (iii) OK	Rating: 3
1989 1988	Q 5: Tricky wedge question. (i) Let accelerations be: $6 \text{ kg} : a \text{ (right)}; 2 \text{ kg} : b \text{ (up)}; 4 \text{ l}$	Rating: 4
1987 1986	That's a funny looking 30°! This is quite straightforward. What makes this question tricky is the friction at the ground	Rating: 2
	the reaction at the ground, not $\frac{1}{3}$ of 4mg.	Rating: 3
1985	(i) OK (ii) OK (iii) My booklet has a new version – the ori disgracefully unclear piece of garbled English.	ginal was a Rating: 4
1984	(i) If 8 kg goes up with acceleration <i>a</i> then C goes down with (ii) Answer precisely what is asked!	th acceleration 2 <i>a</i> . Rating: 3
1983	Very nice question!	Rating: 2

Q5: Collisions

2015		
2014	(b) Quite nice for a part (b)	Rating: 2
2014	(a) Regular direct collision(b) Regular oblique collision	Rating: 3
2013	(a) Not bad at all	Rating. 5
2010	(b) There's always going to be some question with a new ty	wist: it's only fair.
You sł	hould be able to think your way through this neat problem	•
2012		C
	(b) Oblique collisions: not too demanding	Rating: 3
2011	(a) To 'rebound' means to move in the opposite direction (a	apparently)
	(b) A lot of managing and manipulating equations.	Rating: 4
2010	(a) Regular direct collision.	
••••	(b)You need to remember that $0 \le e \le 1$	Rating: 2
2009	(a) This is a reasonable direct collision. (b) Don't be put of	
2000	out: turn the page around!	Rating: 4
2008	(a) Not too bad. Rather a lot of algebra with the letter <i>e</i> .	
	(b) Find the tan of the angle using the formula $\tan \theta = \pm \frac{m_1}{1+1}$	$\frac{1-m_2}{1-m_2}$ for the
	angle between two lines.	Rating: 4
2007	(a) OK. (ii) asks for impulse	
2007	(b) OK. Get velocity of A in terms of i and j .	Rating: 3
2006	(a) Quite long for a part (a). The answer comes out nicely is	if you can avoid
	errors in the algebra. (b) Easier if you turn the page sideways and look at the diag	arom with the i avia
	as the line of centres at impact.	Rating: 3
2005	(a) Regular direct collision question.	Kating. 5
2003	(b) Regular oblique collision question.	Rating: 3
2004	(a) P goes left, Q goes right (after impact).	1
	(b) Equal speeds gives and extra equation.	Rating: 4
2003	(a) Rather long and tricky.	8
	(b) Let $v =$ the speed of A after impact. The definition of 'i	mpulse' is on page
	40 of the mathematical tables.	Rating: 4
2002	(a) Needs care with the algebra.	
• • • • •	(b) Tricky. Do a large diagram to show all the angles.	Rating: 4
2001	(a) Ok. (b) The speeds before might be x and $x + u$.	Rating: 3
2000	(a) Be careful with the signs!(b) The best way to get the angle of deflection is to use the	formula
	(b) The best way to get the angle of deflection is to use the	Iormula
	$\tan\theta = \frac{m_1 - m_2}{1 + m_1 m_2}$	Rating: 4
1999	(a) Ugh! What a horror for a part (a). Do 1994 first (simila	
	best way is to remember that the ratio of the distances is pro	oportional to the
	ratio of the speeds.	Detter er 5
1000	(b) Not nice numbers!	Rating: 5
1998	(a) (i) The Conservation of Momentum equation delivers. a = b + c and if c is positive then $a > b$ (ii) Remember	Note that if that $0 \le a \le 1$
	a = b + c and if c is positive then $a > b$. (ii) Remember (b) Use conservation of energy and then collisions.	Rating: 4
	(b) Ose conservation of energy and then contstons.	Ivatilig. 7

1997 1996	(a) OK (b) Regular oblique collision.(a) Opposite direction: one velocity is positive, one is negative.	Rating: 3 ative!
	(b) After impact, $\sqrt{v_i^2 + v_j^2} = \frac{u}{2}$	Rating: 3
1995	(a) Opposite direction: one velocity is positive, one is negative. (b) Let the inclined plane be the x –axis. For impacts $u_x =$	
1994	Very tricky, so be careful! The best way is to remember the distances is proportional to the ratio of the speeds.	at the ratio of the Rating: 5
1993	Once you get the speeds as i-j vectors, it's an easy question	5
1992	You must make sure that the i-axis is the line of centres at very accurate diagram showing the spheres at the moment coins or a compass. Once you get the speeds as i-j vectors,	of impact, using
1991	(a) Be careful with the algebra! (b) Use $\tan \theta = \pm \frac{m_1 - m_2}{1 + m_1 m_2}$. You have to solve for both \pm	C
1990	answer. The algebra is messy. Long. I've got rid of the original question, which would have had took me 1 hr and 25 minutes to get the right answer. This is once you get the speeds as vectors.	
1989	Be careful! Make use of the fact that the angle of deflectio There are many ways of doing this.	0
1988	Two direct collisions and an impact. Do not be put off by a numbers, surds and fractions. Just keep going, with accura	the awkward
1987 1986	Nice question with nice answers – if you are careful. (a) (i) and (ii) are separate parts with different answers.	Rating: 2
1985	(b) One along each axis, as it transpires. Q4: (i) Very tricky (ii) Differentiate or assume $e = 0$ (iii)	Rating: 3 Long Rating: 5
1984	(a) Definition of Impulse is on P 40 of Maths tables. Trick(b) One along each axis.	8
1983	Nice question with nice answers – if you are careful and do with fractions.	0

Q6: SHM & Circular Motion

2015	(a) Horrible part (a) in which the hint makes the question has	arder. Requires
	knowledge of hydrostatics	
2014	(b) Tricky motion in a vertical circle. It leaves when $R = 0$	Rating: 5
2014	(a) Nasty enough!(b) Very tricky, especially (ii). Ugh!	Rating: 5
2013	(a) Knowledge of hydrostatics is needed.	Raung. J
2010	(b) OK but (ii) is sort of a trick question: it flies off horizon	tally and you've to
	find how long to fall 3 <i>l</i> under gravity – simple!	Rating: 4
2012	(a) SHM formulae needed.	8
	(b) Motion in a vertical circle: challenging!	Rating: 4
2011	(a) Differentiate twice with respect to <i>t</i> .	8
	(b) Good, large, clear diagram will help.	Rating: 3
2010	(a) Ridiculously difficult for a part (a). In (ii) use conserva	tion of energy to
	find speed (b) Not as hard as part (a)!	Rating: 5
2009	(a) Nice classic SHM question.	
	(b) Max accel = $\omega^2 A$. Max force = $m\omega^2 A$. So, $m\omega^2 A \le$	$\leq \mu R$ Rating: 4
2008	(a) Quite challenging for a part (a).	
	(b) Tricky question of motion in a horizontal circle.	Rating: 4
2007	(a) Tricky for a part (a). The length is $l_o + d + x$.	
	(b) Conservation of energy, then conservation of momentum	
	conservation of energy again.	Rating: 4
2006	(a) Just use your formulae.	1
	(b) Difficult. Maximum l will occur when the particle is or	-
	sliding up the side of the cone; hence friction is down the	
2005	Remember: The resultant force to the centre = $m\omega^2 r$.	Rating: 4
2005	(a) Regular circular motion question.	
	(b) The particle does SHM for half the journey and then tra	
2004	speed for the rest of the journey. (a) Motion in a vertical circle. Very tricky.	Rating: 3
2004	(b) (i) Differentiate twice to get <i>a</i> (ii) OK	Rating: 4
2003	(a) OK if you know your formulae.	Nating. 4
2000	(b) Motion in a vertical circle. Tricky.	Rating: 4
2002	(i) Motion in a vertical circle. (ii) $\mathcal{G} = 180^{\circ}$ at this point.	Rating: 4
2001	(a) SHM formulae needed.	U
	(b) Hooke's Law with SHM.	Rating: 3
2000	(a) Regular circular motion.	
	(b) Tricky! There are two strings and gravity.	Rating: 5
1999	(a) SHM formulae.	
1000	(b) SHM with Hooke's Law.	Rating: 3
1998	(a) (i) Differentiate twice to get acceleration.	
	(ii) Must know: The amplitude of $a \sin x + b \cos x$ is $\sqrt{a^2}$	$+b^{2}$.
	(b) Tricky: SHM with hanging particle.	Rating: 4
1997	(a) Very tricky (i) Statics question (ii) The particle now sw	vings with circular
	motion in a vertical circle.	Rating: 5
1996	(a) Regular SHM using formulae.	

	(b) (i) Prove that $a = -\omega^2 x$ (ii) The particle does SHM for half the journey and then travels with a constant speed for the rest of the journey. Rating: 4
1995	(a) Circular motion. Periodic time = $\frac{2\pi}{\omega}$.
1994	(b) Motion in a vertical circle.Rating: 4(i) Easy (ii) Gravity and the glue keep the particle down (iii) it will leave when the acceleration has magnitude 9.8Rating: 3
1993	(a) SHM formulae.Rating: 5(b) Very trick SHM with a vertical string.Rating: 4
1992	(a) See 1998 above (b) (i) Prove that $a = -\omega^2 x$ (ii) The particle does SHM for this part the journey
	(iii) it then travels with a constant speed for the rest of the journey. Rating: 3
1991	(a) Tricky enough circular motion question.(b) SHM of a particle on a vertical string.Rating: 4
1990	 (a) You need to be careful here – and clear in your thinking. SHM. (b) Wonderful question about tides. Not plain sailing though! Rating: 4
1989	(i) Tricky SHM with Hooke's Law. (ii) OK (iii) OK Rating: 4
1988	 (i) Circular motion (you may give the answer in terms of v) (ii) OK (iii) Let x = the distance above the table. Start the whole thing again with new radius, new tension and new angle. Very difficult. Rating: 3
1987	SHM with a vertical string. Rating: 3
1986	(a) If you can figure out where p and q lie, the rest is OK. You can examine the journey from o to q .
	(b) Just Hooke's Law. A statics question. Rating: 4
1985	(i) OK (ii) OK (iii) Very tricky (iv) Presumably from a stationary position to a position of slackness. Rating: 5
1984	 (a) Regular circular motion question. (b) Examine the forces etc on each particle separately. They go in circles of radius <i>y</i> and 3<i>y</i>.
1983	Q7: (i) Friction is up the side of the cone.
1700	(ii) Friction is down the side of the cone. (See 2006) Rating: 4
	Q8 : Excellent but challenging SHM question which requires thought.
	(HINT: the centre of oscillation is where $x = 0$.) Rating: 4

Q7: Statics

2015	(a) Nice and straightforward: they must want more students	
	question because part (b) is a regular double-ladder.	Rating: 2
2014	(a) It's just a centre of gravity question (as in the textbook).	Nice!
	(b) The line of action of the normal reaction is towards the	
		Rating: 3
0010		0
2013	(a) Trick enough. The magnitude of the 12 and 5 combined	
	(b) Not very nice at all!	Rating: 4
2012	(a) Not too bad but tricky enough.	
	(b) Rather difficult!	Rating: 4
2011		Kating, I
2011	(a) Hooke's law states that: $T = k(l-l_o)$	
	(b) Tricky statics question.	Rating: 4
2010	(a) Assume it's on point of slipping	
	(b) Very large diagrams with distances and forces (drawn u	sing a compass on
	graph paper) will help you a lot. Only one equation needed	•
	Stupit puper) with help you a lot. Only one equation needed	Rating: 4
2000		0
2009	(a) Ok (b) Who was mean to the examiner the morning he	-
	Did someone scratch the paintwork on his new car? Ooof!	Rating: 5
2008	(a) Nice ladder question for starters.	
	(b) Not bad for a part (b). The best policy is to write down	the three equations
	for each rod. Rating: 3	une un ce equations
2005	8	
2007	(a) Holy Moly! What a part (a)!! Ugh!	
	(b) Nicer than part (a). F will be perpendicular to the radius	s to the kerb.
		Rating: 4
2006	(a) Very easy.	U
2000	(b) Quite nice for a part (b). Friction = $(\tan \lambda)R$.	Rating: 2
• • • •		Nating. 2
2005	(a) Assume it is just on the point of moving up the plane.	
	(b) Get 3 equations for the system and 3 for the lighter rod ((as it will be the
	first to slip).	Rating: 3
2004	(a) Straightforward ladder question.	8
	(b) Not difficult: just get forces and angles.	Rating: 3
2002	· · · · · · · · · · · · · · · · · · ·	
2003	Reasonably straightforward. The rod is perpendicular to the	
	of contact.	Rating: 3
2002	Clear thinking needed.	Rating: 3
2001	(a) Too tricky for a part (a)	
	(b) Off-putting apparatus.	Rating: 4
2000	(a) Straightforward ladder question.	
2000		Deting 4
1000	(b) Not too bad	Rating: 4
1999	(a) You must know all about angle of friction: $\tan \lambda = \mu$	
	(b) Not bad.	Rating: 3
1998	It's easy to get equations but hard to get the answer!	Rating: 5
		0
1997	(a) (i) Draw good diagrams (ii) Hooke's Law: $F = k(l - l_o)$	
	(b) Tricky	Rating: 4
1996	(a) Draw a clear diagram. (b) The worst situation will be w	0
	just at the top of one of the ladders: assume the ladder is or	-
100-	slipping at this point.	Rating: 4
1995	(i) Get 3 equations for the system and three for AB.	
	(ii) Write the two Reactions as i-j vectors; use dot product of	or $m_1 . m_2 = -1$
		1 2

	Rating: 4
1994	Get 3 equations for the system and 3 for the rod on the point of slipping.
	Rating: 3
1993	(i) Good diagram needed. Be careful with moments.
	(ii) New diagram and new equations. Rating: 4
1992	(a) Tricky trigonometrical equations here.
	(b) (i) OK (ii) Ugh! Rating: 5
1991	(i) There will be a normal reaction at the peg and a friction force up. (ii) OK
	(iii) Solve for tan θ and show that the quadratic equation has no solution.
	Rating: 5
1990	(a) Be precise!
	(b) Straightforward rod question. Rating: 3
1989	(i) Simultaneous equations. (ii) OK (iii) You may have to use differentiation
	to find the least force. Rating: 4
1988	(a) Assume there are forces X (horizontal) and Y (vertical) at b. There will be
	a normal reaction at the peg (which is not half-way down) (ii) It transpires
	that $Y = 0$. (iii) Just find X in terms of W . Rating: 4
1987	(i) First find the distance from P to the point of contact. The normal reaction
	at the point of contact will be perpendicular to the rod.
	(ii) Just two equations will do for the rod: the moments can't be found as we
1007	don't know its length. Rating: 5
1986	Definitions and a rather straightforward ladder problem. Rating: 3
1985	(i) Don't forget: a metre stick is one metre long! (ii) OK (iii) 3 new equations.
1984	(a) Theorem: If three forces act on a body, then their lines of action are
1704	concurrent. Hence the line of the string goes through the centre of the sphere.
	(b) The above theorem again applies! Rating: 5
1983	No statics question!
1705	

Q8: Moments of Inertia

2015	(a) Proof of rod (b) Regular maximum pariad: rise and tool. No need for as	and dominations to
	(b) Regular maximum period: nice one too! No need for se	
-	answer is a minimum not a maximum. (1) The sector (1) The sector (1)	Rating: 2
2014	(a) Proof of disc (b) The mass of the disc removed = 0	
0010	the AREA of the hole is 0.2 of the area of the disc.	Rating: 3
2013	(a) Proof of disc (b) You can work out their distances from	-
	Pythagoras.	Rating: 3
2012	(a) Proof of disc (b) You can solve using Conservation of	
	Principle of Angular Momentum: I prefer the former.	Rating: 3
2011	(a) Proof for square lamina. (b) (i) Conservation of energy	
	(ii) Periodic time of compound pendulum	Rating: 3
2010	(a) Proof for the disc	
	(b) (i) Just change the limits (ii) Conservation of energy	Rating: 3
2009	(a) Proof for the rod.	
	(b) Three nice rods in a triangle.	Rating: 2
2008	(a) Proof for the disc.	
	(b) Be careful! This is not Q4 where pulleys are smooth.	The tension in the
right p	art of the string is greater than that in the left part. Use cons	ervation of energy:
the los	s in PE is equal to the gain in KE: the particles speed up and	d the disc starts to
rotate.		Rating: 5
2007	(a) Learnt off by heart!	0
	(b) Find w when [ac] is vertical.	Rating: 3
2006	(a) Rod proof (b) (i) Energy equation (ii) Use circular moti	on theory:
	$F_c = m\omega^2 r$, where F_c is the resultant force and $r = 0.6$ (the	
		Rating: 4
2005	(a) Rod proof. (b) (i) Use the horizontal line through p as	0
2003	the height will be negative when the centre of gravity is bel	
		Rating: 4
2004		0
2004	(a) Disc proof. (b) Principle of conservation of energy: the	
	$\frac{1}{2}mv^2$; the pulley's is $\frac{1}{2}I\omega^2$, where $v = \omega r$.	Rating: 3
	() D 1 $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$.1.\
2003	(a) Rod proof. (b) $T = 2\pi \sqrt{\frac{I}{mgh}}$ and $h = \frac{2}{3}(median - leng)$	<i>th</i>).
	1.1.8.1	
••••	(1) = 1 = 0 (1) = 1 = 1 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 0	Rating: 3
2002	(a) Rod proof (b) Find the KE $(\frac{1}{2}I\omega^2)$ before and after. T	he work done is the
	difference between these.	Rating: 3
2001	(a) Disc proof. (b) Tricky enough.	Rating: 4
2000	(a) Disc proof (b) At the bottom of the slope the disc is bo	oth moving and
rolling	, so its KE = $\frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$.	Rating: 3
1999	(a) Rod proof. (b) (i) Solve an equation (ii) Let distance	e
1777	quadratic equation. (iii) Differentiate T^2 with respect to x.	
1998	(a) Rod proof (endpoint) (b) Look up textbook! (c) (i) O	0
1770	height which the centre reaches, then the endpoint.	Rating: 4
	norgin which the centre reaches, then the chupolin.	Maning, T

1997	(a) Disc proof. (b) (i) First find the moment of inertia about a diameter $1 - 1 - 1 - 1 - 1 - 2 = 1 - 1 - 1 - 2 = 1 - 1 - 1 - 1 - 2 = 1 - 1 - 1 - 1 - 2 = 1 - 1 - 1 - 1 - 2 = 1 - 1 - 1 - 1 - 2 = 1 - 1 - 1 - 1 - 2 = 1 - 1 - 1 - 1 - 2 = 1 - 1 - 1 - 1 - 2 = 1 - 1 - 1 - 1 - 2 = 1 - 1 - 1 - 1 - 2 = 1 - 1 - 1 - 1 - 2 = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1$	
	through C: the formula is $\frac{1}{4}mr^2$. Then use Parallel Axes (ii) Differentiate T^2 with respect to x.	Rating: 4
1996	(a) Disc proof.	Kating. 4
	(b) Tricky but do-able.	Rating: 3
1995	 (a) Square lamina proof. (b) Differentiate T² with respect to x. 	Rating: 3
		e
1994	(i) $T = 2\pi \sqrt{\frac{I}{mgh}}$ (ii) Use the horizontal line through <i>p</i> as	'sea level'; <i>h</i> will
	be negative when the rod is below this line.	Rating: 4
1993	(a) Rod proof (it should read $\frac{1}{3}ml^2$)	
	(b) (i) Find the minimum value of ω , then switch to v.	
1992	(ii) Regular periodic time question.(a) Disc proof.	Rating: 3
1//2	(b) When finding h, you can say that the two ms at q and s	are equivalent to
	2m at the centre.	Rating: 4
1991	(a) Rod proof (b) Regular periodic time question.	Rating: 3
1990	(a) Square lamina proof. (b) (i) Very good diagram helps.	
1989	mass. Solve an equation. (a) Disc proof. (b Differentiate T^2 with respect to x.	Rating: 4 Rating: 3
1988	(a) Rod proof.	Rating. 5
	(b) See 2003	Rating: 2
1987	(a) Annulus proof. Be careful! It says 'diameter', not 'rad	
1007	(b) Straightforward.	Rating: 4
1986	(a) Disc proof.(b) Let s = the distance travelled. At the bottom of the slop	e the disc is both
	moving and rolling, so its KE = $\frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$. Find v and	
	acceleration.	Rating: 3
1985	(i) Use Pythagoras to find all lengths. Tricky! (ii) T form	•
	(iii) Differentiate T^2 with respect to T	Dating 1
1984	An elegant question with a clever quadratic equation. Nice	
1002	don't make any mistakes.	Rating: 3
1983	Q6: (i) This question should not have been asked, as triang course. You have to divide the triangle into horizontal stri	
	triangles to find an expression for their lengths. Then integrated	
	(ii) Ugh!! (iii) Horrendous	Rating: 5 ⁺

Q9: Hydrostatics

2015	(a) Not particularly nice part (a)	
	(b) Nasty rocks aboy, mateys! Tricky to understand. It gave sinking feeling.	e a lot of students a Rating: 4
2014	(a) Needs very clear thought. Nasty!	Nating. 1
2012	(b) Fiercely tricky	Rating: 5
2013	(a) Careful now!(b) Where's the picture, Mr Examiner?	Rating: 4
2012	(a) Nice easy start.	C .
3011	(b) Classic hydrostatics on a rod in a liquid.	Rating: 3
2011	 (a) When overflowing starts, oil = 24 and water = h. (b) Needs very clear understanding. 	Rating: 4
2010	(a) A bit yukky for the first part!	0
2000	(b) Let $x =$ length of immersed part	Rating: 4
2009	(a) Not easy: tricky and long.(b) Regular rod tilted in liquid. OK	Rating: 4
2008	(a) Not too easy.	C .
2007	(b) Quite tricky.	Rating: 4
2007	(a) Not bad.(b) Tricky	Rating: 4
2006	(a) The fact that it contracts means the volume is less – that	's all!
	(b) (i) Maximum buoyancy will be if it is all under water. ((iii) Nice.	ii) Tricky Rating: 4
2005	(a) Volume, mass, density, etc	Kating. 4
	(b) Statics problem. OK.	Rating: 3
2004	(a) U-tube. Pressure at the same level in the same liquid is(b) Must know where centre of gravity of a triangle is at the	
	thirds of the way along a median.	Rating: 3
2003	(a) (i) OK (ii) Should not have been asked as the syllabus i	
	on a horizontal surface". However, thrust = P_c . A, where P_c the centre and A is the area. (iii) Likewise.	is the pressure at
	(b) Tricky!	Rating: 5
2002	(a) Very tricky part (a).(b) Tricky enough. Archimedes' Principle applied.	Rating: 4
2001	(a) Clear thinking needed.	Kating: 4
	(b) Let x be the length of the immersed part.	Rating: 4
2000	(a) Not easy for a part (a).(b) Rather complicated – hard to get one's head around this	nrohlem!
	(b) Rather complicated – hard to get one s head around this	Rating: 5
1999	(a) U-tube problem: OK.	
1998	(b) Reasonable Archimedes' Principle problem.(a) Thrust on a vertical surface is not on the course. However, the problem of the course is not on the course.	Rating: 3 ver. see 2003.
1770	(b) Tricky statics problem.	Rating: 4
1997	(a) Reasonable weight problem. (b) Pather complicated problem _ hard to solve	Dating: 4
1996	(b) Rather complicated problem – hard to solve.(a) Statics problem. OK.	Rating: 4
	(b) Relative density. OK.	Rating: 3
1995	(a) OK relative density problem.	

	(b) Nice problem about volumes and density. In the third c	ase the object is
	force under water.	Rating: 3
1994	(a) Nice question about density, volume, mass.	
	(b) Tricky problem.	Rating: 4
1993	(a) Regular relative density problem.	
	(b) Statics problem: reasonable.	Rating: 3
1992	(a) Tricky for part (a).	
	(b) See 2003 about thrust on a vertical surface.	Rating: 5
1991	Tricky statics problem.	Rating: 4
1990	(a) Very tricky for a part (a).	
	(b) OK, despite error in question.	Rating: 5
1989	(a) Tricky problem.	
	(b) Clever problem involving forces.	Rating: 4
1988	Reasonable problem of forces.	Rating: 3
1987	(a) Tricky – especially part (ii)	
	(b) Reasonable forces problem.	Rating: 4
1986	(a) Tricky part (a). It involves thrust on a vertical surface, v course. See 2003.	which is not on the
	(b) Clever question of Archimedes' Principle.	Rating: 4
1985	(a) Difficult relative density problem. (b) OK question on	forces.
		Rating: 4
1984	(a) Reasonable relative density problem.	
	(b) Must know SHM theory. Tricky. See textbook.	Rating: 4
1983	(a) OK. U-tube problem. (b) Archimedes' Principle.	Rating: 3

10. Differential Equations

2015	(a) Clever question but manageable. Part (iii) tests your understanding of the relationship between area and integration.(b) Financial Maths by the back door! Good question, though.	
		Rating: 3
2014	(a) Use $\frac{dv}{dt}$ in (i) and $v\frac{dv}{ds}$ in (ii)	
2013	(b) Not bad at all!(a) Fine! Nice separable differential equation.(b) No problem!	Rating: 3
	(c) $\frac{dV}{dt} = -kV$	Rating: 3
	(a) Very manageable.(b) Nice problem: not too difficult.	Rating: 2
2011	(a) Nice separable differential equation	
	(b) Nowadays you'd be given that $\int \frac{v dv}{v^2 + 6400} = \frac{1}{2} \ln(v^2 + 6400)$	6400) and
$\int \frac{d}{v^2 + v^2}$	$\frac{dv}{6400} = \frac{1}{80} \tan^{-1}(\frac{v}{80})$ Rating	g: 3
2010	(a) Nowadays you'd be given that $\int \frac{ydy}{y^2+1} = \frac{1}{2}\ln(y^2+1)$	
	(b) And you'd be given that $\int \frac{v dv}{200 - v^2} = -\frac{1}{2} \ln(200 - v^2)$	Rating: 3
2009	(a) Nowadays you'd be given that $\int \frac{ydy}{y^2 + 1} = \frac{1}{2}\ln(y^2 + 1)$	
	(b) And $\int \frac{v dv}{kv^2 + g} = \frac{1}{2k} \ln(kv^2 + g)$	Rating: 2
2008	(a) Take out the common factor first.	
2007	 (b) P = Tv is the key equation here. (a) Perfectly ordinary. 	Rating: 3
2007	(b) The maximum occurs when the acceleration = 0	Rating: 2
2006	(a) Needs care, but OK. (b) (i) OK (ii) You need to find	
	then change v to $\frac{dx}{dt}$. Then integrate again!	Rating: 4
2005	(a) Regular.	
2004	(b) (i) OK. (ii) OK (iii) Find the energy before and after. (a) Regular.	Rating: 3
2004	(b) Gravity and resistance are both negative. OK.	Rating: 3
2003	(a) OK. Requires substitution.	0
2002	(b) Power = Tv .	Rating: 4
2002	(a) Use the Laws of Indices to separate <i>x</i> from <i>y</i>.(b) Not bad.	Rating: 3
2001	(a) Disgraceful question! It is not a separable differential e therefore not on the course. It requires you to differentiate function. You should get (as your answer) the LHS of the	equation and is an implicit

	Then say, "If the differentiation of $\frac{y}{x}$ is $\frac{1}{x}$ then $\frac{y}{x} = \int \frac{1}{x} dx$ a	nd proceed using a
	constant of integration (not limits). The only person to get	
	sadistic examiner who set it. He should be punished by be	
	Goldbach's Conjecture – and left in solitary confinement u	
2000	(b) OK problem.(a) Take a common factor out of the first two terms. Quad	Rating: 5
2000	needed. (b) Be careful with the fractions.	Rating: 3
1999	(a) Nice separable differential equation.	Rating. 0
	(b) Disgrace. The integration involved is not on the course	e! You need to look
	up the Maths tables to find it. Thrust is another name for a	
1000	degree of accuracy is needed.	Rating: 5
1998	(a) Nice. (b) (i) Clever (ii) You can change v in the previ	
1007	You have to remember that k and u are constants.	Rating: 3
1997	(a) Common factor.(b) Nice problem.	Rating: 2
1996	(a) You must know that $\ln e^x = x$.	Rating. 2
1770	(b) (i) Draw a diagram for the particle on the way up. Both	1 forces are
	negative. (ii) On the way down, downwards is positive, so	
	and the resistance is negative.	Rating: 5
1995	(a) Fine. (b) Gravity is positive, resistance is negative.	Rating: 3
1994	(a) Common factor. Then let $u = 1 + x$. Tricky. (b) Power = $T_{xy} = 75000$. Now get the forme equation of matrix	ation
	(b) Power = $Tv = 75000$. Now get the force equation of me	Rating: 4
1993	(a) Substitution. (b) (i) Logic! (ii) Nice integration.	Rating: 3
1992	(a) Easy! (So long as you know your trigonometrical integ	grations.)
	(b) Use $a = v \frac{dv}{ds}$ and then $a = \frac{dv}{dt}$	Rating: 4
1001		
1991	(a) Add $\frac{1}{y} + y$ first!	
	(b) Keep a clear head: it's not that difficult!	Rating: 3
1990	(a) The amended version is easy – the original integration is	required partial
	fractions which are no longer on the course.(b) (i) Logic! (ii) Requires cleverness to link the two equations	tions (The second
		× ·
	is got by changing v to $\frac{dx}{dt}$.	Rating: 4
1989	(a) Common factor. (b) Use $a = v \frac{dv}{ds}$ and then $a = \frac{dv}{dt}$.	Average speed is
1707		
1000	total distance over total time.	Rating: 4
1988	(a) Be careful! Either divide out the common factor (4) or (b) Multiply by 1000. Use radian mode of calculator to fin	
	(b) Multiply by 1000. Use radian mode of calculator to fin	Rating: 3
1987	(a) Use substitution. (b) Holy Moly! What a question. The substitution of the substitu	U
	(Tv) never changes, as the train heads from the flat to the h	ill. This question is
	a monster! If you can solve this one, you can solve any!	Rating: 5
1986	(a) OK (b) Use $a = v \frac{dv}{ds}$ and then $a = \frac{dv}{dt}$.	Rating: 4
	ds dt	

1985 (a) Use substitution. (b) Average speed is total distance over total time.

Rating: 4

- 1984 (a) Let the time be t. Then find the limit of v as t tends to infinity. $\frac{dv}{dt} = \frac{dv}{dt}$
 - (b) Use $a = v \frac{dv}{ds}$ and then $a = \frac{dv}{dt}$. Rating: 3
- (a) The integration of cot x is in the Mathematical Tables. You may use substitution also.(b) Characteristic (density energy in arising energy in a start of the integration). It are the instance of the integration of the int

(b) Clever question (despite error in original question). Leave the *i* out of the equation. **Rating: 3**